{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Gaussian Smoothing {#gaussian_smoothing_example}\n\nPerform a Gaussian convolution on a uniformly gridded data set.\n\n`pyvista.ImageData`{.interpreted-text role=\"class\"} data sets (a.k.a.\nimages) a can be smoothed by convolving the image data set with a\nGaussian for one- to three-dimensional inputs. This is commonly referred\nto as Gaussian blurring and typically used to reduce noise or decrease\nthe detail of an image dataset.\n\nSee also `pyvista.ImageDataFilters.gaussian_smooth`{.interpreted-text\nrole=\"func\"}.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pyvista as pv\nfrom pyvista import examples\n\n# Load dataset\ndata = examples.download_gourds()\n\n# Define a good point of view\ncp = [(319.5, 239.5, 1053.7372980874645), (319.5, 239.5, 0.0), (0.0, 1.0, 0.0)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let\\'s apply the Gaussian smoothing with different values of standard\ndeviation.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "p = pv.Plotter(shape=(2, 2))\n\np.subplot(0, 0)\np.add_text(\"Original Image\", font_size=14)\np.add_mesh(data, rgb=True)\np.camera_position = cp\n\np.subplot(0, 1)\np.add_text(\"Gaussian smoothing, std=2\", font_size=14)\np.add_mesh(data.gaussian_smooth(std_dev=2.0), rgb=True)\np.camera_position = cp\n\np.subplot(1, 0)\np.add_text(\"Gaussian smoothing, std=4\", font_size=14)\np.add_mesh(data.gaussian_smooth(std_dev=4.0), rgb=True)\np.camera_position = cp\n\np.subplot(1, 1)\np.add_text(\"Gaussian smoothing, std=8\", font_size=14)\np.add_mesh(data.gaussian_smooth(std_dev=8.0), rgb=True)\np.camera_position = cp\n\np.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "| \n\n# Volume Rendering\n\nNow let\\'s see an example on a 3D dataset with volume rendering:\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data = examples.download_brain()\n\nsmoothed_data = data.gaussian_smooth(std_dev=3.0)\n\n\ndargs = dict(clim=smoothed_data.get_data_range(), opacity=[0, 0, 0, 0.1, 0.3, 0.6, 1])\n\nn = [100, 150, 200, 245, 255]\n\np = pv.Plotter(shape=(1, 2))\np.subplot(0, 0)\np.add_text(\"Original Image\", font_size=24)\n# p.add_mesh(data.contour(n), **dargs)\np.add_volume(data, **dargs)\np.subplot(0, 1)\np.add_text(\"Gaussian smoothing\", font_size=24)\n# p.add_mesh(smoothed_data.contour(n), **dargs)\np.add_volume(smoothed_data, **dargs)\np.link_views()\np.camera_position = [(-162.0, 704.8, 65.02), (90.0, 108.0, 90.0), (0.0068, 0.0447, 0.999)]\np.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 0 }