{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Platonic Solids {#platonic_example}\n\nPyVista wraps the `vtk.vtkPlatonicSolidSource` filter as\n`pyvista.PlatonicSolid`{.interpreted-text role=\"func\"}.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n\nimport pyvista as pv\nfrom pyvista import examples" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can either use the generic\n`PlatonicSolid() <pyvista.PlatonicSolid>`{.interpreted-text role=\"func\"}\nand specify the different kinds of solids to generate, or we can use the\nthin wrappers:\n\n- `pyvista.Tetrahedron`{.interpreted-text role=\"func\"}\n- `pyvista.Octahedron`{.interpreted-text role=\"func\"}\n- `pyvista.Dodecahedron`{.interpreted-text role=\"func\"}\n- `pyvista.Icosahedron`{.interpreted-text role=\"func\"}\n- `pyvista.Cube`{.interpreted-text role=\"func\"} (implemented via a\n different filter)\n\nLet\\'s generate all the Platonic solids, along with the `teapotahedron\n<pyvista.examples.downloads.download_teapot>`{.interpreted-text\nrole=\"func\"}.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "kinds = [\n 'tetrahedron',\n 'cube',\n 'octahedron',\n 'dodecahedron',\n 'icosahedron',\n]\ncenters = [\n (0, 1, 0),\n (0, 0, 0),\n (0, 2, 0),\n (-1, 0, 0),\n (-1, 2, 0),\n]\n\nsolids = [pv.PlatonicSolid(kind, radius=0.4, center=center) for kind, center in zip(kinds, centers)]\n\n# download and align teapotahedron\nteapot = examples.download_teapot()\nteapot.rotate_x(90, inplace=True)\nteapot.rotate_z(-45, inplace=True)\nteapot.scale(0.16, inplace=True)\nteapot.points += np.array([-1, 1, 0]) - teapot.center\nsolids.append(teapot)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let\\'s plot them all.\n\n::: note\n::: title\nNote\n:::\n\nVTK has known issues when rendering shadows on certain window sizes. Be\nprepared to experiment with the `window_size` parameter. An initial\nwindow size of `(1000, 1000)` seems to work well, which can be manually\nresized without issue.\n:::\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "p = pv.Plotter(window_size=[1000, 1000])\nfor ind, solid in enumerate(solids):\n # only use smooth shading for the teapot\n smooth_shading = ind == len(solids) - 1\n p.add_mesh(\n solid,\n color='silver',\n smooth_shading=smooth_shading,\n specular=1.0,\n specular_power=10,\n )\np.view_vector((5.0, 2, 3))\np.add_floor('-z', lighting=True, color='lightblue', pad=1.0)\np.enable_shadows()\np.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Platonic solids come with cell scalars that index each face of the\nsolids.\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 0 }